On the Jacobsthal-Lucas Numbers by Matrix Method

نویسندگان

  • Fikri Köken
  • Durmuş Bozkurt
  • D. Bozkurt
چکیده

In this study, we define the Jacobsthal Lucas E-matrix and R-matrix alike to the Fibonacci Q-matrix. Using this matrix represantation we have found some equalities and Binet-like formula for the Jacobsthal and Jacobsthal-Lucas numbers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the sum of Pell and Jacobsthal numbers by matrix method

In this paper‎, ‎we define two $n$-square upper Hessenberg matrices one of which corresponds to the adjacency matrix of a directed pseudo graph‎. ‎We investigate relations between permanents and determinants of these upper Hessenberg matrices‎, ‎and sum formulas of the well-known Pell and Jacobsthal sequences‎. ‎Finally‎, ‎we present two Maple 13 procedures in order to calculate permanents of t...

متن کامل

Some Bounds for the Norms of Circulant Matrices with the k-Jacobsthal and k-Jacobsthal Lucas Numbers

Abstract In this paper we investigate upper and lower bounds of the norms of the circulant matrices whose elements are k−Jacobsthal numbers and k−Jacobsthal Lucas numbers.

متن کامل

On Some Identities of k-Jacobsthal-Lucas Numbers

In this paper we present the sequence of the k-Jacobsthal-Lucas numbers that generalizes the Jacobsthal-Lucas sequence introduced by Horadam in 1988. For this new sequence we establish an explicit formula for the term of order n, the well-known Binet’s formula, Catalan’s and d’Ocagne’s Identities and a generating function. Mathematics Subject Classification 2010: 11B37, 11B83

متن کامل

Some Generalizations of the Jacobsthal Numbers

The main object of this paper is to introduce and investigate some properties and relations involving sequences of numbers Fn,m(r), for m = 2, 3, 4, and r is some real number. These sequences are generalizations of the Jacobsthal and Jacobsthal Lucas numbers.

متن کامل

Generalized Bivariate Lucas p-Polynomials and Hessenberg Matrices

In this paper, we give some determinantal and permanental representations of generalized bivariate Lucas p-polynomials by using various Hessenberg matrices. The results that we obtained are important since generalized bivariate Lucas p-polynomials are general forms of, for example, bivariate Jacobsthal-Lucas, bivariate Pell-Lucas ppolynomials, Chebyshev polynomials of the first kind, Jacobsthal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008